ENGLEWOOD CITY OF 2020 Drinking Water Quality Report For Calendar Year 2019

Public Water System ID: CO0103045

Esta es información importante. Si no la pueden leer, necesitan que alguien se la traduzca.

We are pleased to present to you this year's water quality report. Our constant goal is to provide you with a safe and dependable supply of drinking water. Please contact the Allen Water Treatment Plant at 303-762-2650 with any questions or for public participation opportunities that may affect water quality.

General Information

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (1-800-426-4791) or by visiting http://water.epa.gov/drink/contaminants.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk of infections. These people should seek advice about drinking water from their health care providers. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and microbiological contaminants call the EPA Safe Drinking Water Hotline at (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- Microbial contaminants: viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- **Inorganic contaminants:** salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides: may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses.
- Radioactive contaminants: can be naturally occurring or be the result of oil and gas production and mining activities.
- Organic chemical contaminants: including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff, and septic systems.

In order to ensure that tap water is safe to drink, the Colorado Department of Public Health and Environment prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health.

Lead in Drinking Water

If present, elevated levels of lead can cause serious health problems (especially for pregnant women and young children). It is possible that lead levels at your home may be higher than other homes in the community as a result of materials used in your home's plumbing. If you are concerned about lead in your water, you may wish to have your water tested. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. Additional information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/safewater/lead.

Source Water Assessment and Protection (SWAP)

The Colorado Department of Public Health and Environment may have provided us with a Source Water Assessment Report for our water supply. For general information or to obtain a copy of the report please visit www.colorado.gov/cdphe/ccr. The report is located under "Guidance: Source Water Assessment Reports". Search the table using 103045, ENGLEWOOD CITY OF, or by contacting Dave Chapman at 303-762-2650. The Source Water Assessment Report provides a screening-level evaluation of potential contamination that could occur. It does not mean that the contamination threats. This can help us ensure that quality finished water is delivered to your homes. In addition, the source water assessment results provide a starting point for developing a source water protection plan. Potential sources of contamination in our source water area are listed on the next page.

Please contact us to learn more about what you can do to help protect your drinking water sources, any questions about the Drinking Water Quality Report, to learn more about our system, or to attend scheduled public meetings. We want you, our valued customers, to be informed about the services we provide and the quality water we deliver to you every day.

Our Water Sources

Sources (Water Type - Source Type)	Potential Source(s) of Contamination
MCTELLAN RESERVOIR (Surface Water-Intake)	EPA Superfund Sites, EPA Abandoned Contaminated Sites, EPA Hazardous Waste Generators, EPA Chemical Inventory/Storage Sites, EPA Toxic Release Inventory Sites, Permitted Wastewater Discharge Sites, Aboveground, Underground and Leaking Storage Tank Sites, Solid Waste Sites, Existing/Abandoned Mine Sites, Other Facilities, Commercial/Industrial/Transportation, High Intensity Residential, Low Intensity Residential, Urban Recreational Grasses, Quarries / Strip Mines / Gravel Pits, Row Crops, Fallow, Pasture / Hay, Deciduous Forest, Evergreen Forest, Mixed Forest, Septic Systems, Oil / Gas Wells, Road Miles

Terms and Abbreviations

- Maximum Contaminant Level (MCL) The highest level of a contaminant allowed in drinking water.
- Treatment Technique (TT) A required process intended to reduce the level of a contaminant in drinking water.
- **Health-Based** A violation of either a MCL or TT.
- **Non-Health-Based** A violation that is not a MCL or TT.

- Action Level (AL) The concentration of a contaminant which, if exceeded, triggers treatment and other regulatory requirements.
- Maximum Residual Disinfectant Level (MRDL) The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- Maximum Residual Disinfectant Level Goal (MRDLG) The level of a drinking water disinfectant, below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Violation (No Abbreviation) Failure to meet a Colorado Primary Drinking Water Regulation.
- Formal Enforcement Action (No Abbreviation) Escalated action taken by the State (due to the risk to public health, or number or severity of violations) to bring a non-compliant water system back into compliance.
- Variance and Exemptions (V/E) Department permission not to meet a MCL or treatment technique under certain conditions.
- Gross Alpha (No Abbreviation) Gross alpha particle activity compliance value. It includes radium-226, but excludes radon 222, and uranium.
- **Picocuries per liter (pCi/L)** Measure of the radioactivity in water.
- Nephelometric Turbidity Unit (NTU) Measure of the clarity or cloudiness of water. Turbidity in excess of 5 NTU is just noticeable to the typical person.
- Compliance Value (No Abbreviation) Single or calculated value used to determine if regulatory contaminant level (e.g. MCL) is met. Examples of calculated values are the 90th Percentile, Running Annual Average (RAA) and Locational Running Annual Average (LRAA).
- Average (x-bar) Typical value.
- Range (R) Lowest value to the highest value.
- Sample Size (n) Number or count of values (i.e. number of water samples collected).
- Parts per million = Milligrams per liter (ppm = mg/L) One part per million corresponds to one minute in two years or a single penny in \$10,000.
- Parts per billion = Micrograms per liter (ppb = ug/L) One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- Not Applicable (N/A) Does not apply or not available.
- Level 1 Assessment A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
- Level 2 Assessment A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Detected Contaminants

ENGLEWOOD CITY OF routinely monitors for contaminants in your drinking water according to Federal and State laws. The following table(s) show all detections found in the period of January 1 to December 31, 2018 unless otherwise noted. The State of Colorado requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. Therefore, some of our data, though representative, may be more than one year old. Violations and Formal Enforcement Actions, if any, are reported in the next section of this report.

Note: Only detected contaminants sampled within the last 5 years appear in this report. If no tables appear in this section then no contaminants were detected in the last round of monitoring.

Disinfectants Sampled in the Distribution System

TT Requirement: At least 95% of samples per period (month or quarter) must be at least 0.2 ppm <u>OR</u>

If sample size is less than 40 no more than 1 sample is below 0.2 ppm **Typical Sources:** Water additive used to control microbes

Disinfectant Name	Time Period	Results	Number of Samples Below Level	Sample Size	TT Violation	MRDL
Chloramine	August, 2019	Lowest period percentage of samples meeting TT requirement: 100%	0	50	No	4.0 ppm

		L	ead and Cop	per Sampled in th	e Distribution	System		
Contaminant Name	Time Period	90 th Percentile	Sample Size	Unit of Measure	90 th Percentile AL	Sample Sites Above AL	90 th Percentile AL Exceedance	Typical Sources
Copper	06/21/2019 to 07/05/2019	0.05	30	ppm	1.3	0	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead	06/21/2019 to 07/05/2019	4	30	ppb	15	0	No	Corrosion of household plumbing systems; Erosion of natural deposits

			Disinfection Byp	roducts Sam	pled in the	Distribu	tion Syster	n	
Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources
Total Haloacetic Acids (HAA5)	2019	10.77	6.4 to 14.7	48	ppb	60	N/A	No	Byproduct of drinking water disinfection
Total Trihalomethanes (TTHM)	2019	39.28	28.9 to 58.9	48	ppb	80	N/A	No	Byproduct of drinking water disinfection

	Tota	al Organic Carl	oon (Disinfection B	yproducts Pi	recursor) Rem	oval Ratio of Rav	v and Finished	Water
Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	TT Minimum Ratio	TT Violation	Typical Sources
Total Organic Carbon Ratio	2019	1.17	.82 to 1.5	12	Ratio	1.00	No	Naturally present in the environment

^{*}If minimum ratio not met and no violation identified then the system achieved compliance using alternative criteria.

Disinfec	tants Sampl	ed at the Entry Point to	the Distributio	n System (<u>Chlorine/Chloramine Row is Optional, C</u>	hlorine Dioxide	is Required)
Disinfectant Name	Year	Number of Samples Above or Below Level	Sample Size	TT/MRDL Requirement	TT/MRDL Violation	Typical Sources
Chlorine/Chloramine	2019	0	2190	TT = No more than 4 hours with a sample below 0.2 MG/L	No	Water additive used to control microbes

	St	mmary of Turbidity Sampled at the Entry Point to	the Distribution System		
Contaminant Name	Sample Date	Level Found	TT Requirement	TT Violation	Typical Sources
Turbidity	Date/Month: Jul	<u>Highest single</u> measurement: 0.09 NTU	Maximum 1 NTU for any single measurement	No	Soil Runoff
Turbidity	Month: Dec	Lowest monthly percentage of samples meeting TT requirement for our technology: 100 %	In any month, at least 95% of samples must be less than 0.3 NTU	No	Soil Runoff

		Ra	ndionuclides Sampl	ed at the En	try Point to	the Distrib	oution System	n	
Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources
Gross Alpha	2017	4.42	0.73 to 8.1	2	pCi/L	15	0	No	Erosion of natural deposits
Combined Radium	2017	0.1	0.1 to 0.1	1	pCi/L	5	0	No	Erosion of natural deposits
Combined Uranium	2017	11	11 to 11	1	ppb	30	0	No	Erosion of natural deposits

			Inorganic Con	taminants Sa	mpled at the	Entry Poi	nt to the Di	stribution Sy	ystem
Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources
Barium	2019	0.07	0.07 to 0.07	1	ppm	2	2	No	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Chromium	2019	2	2 to 2	1	ppb	100	100	No	Discharge from steel and pulp mills: erosion of natural deposits
Fluoride	2019	0.84	0.84 to 0.84	1	ppm	4	4	No	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Nitrate	2019	4.9	4.9 to 4.9	1	ppm	10	10	No	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Selenium	2019	7	7 to 7	1	ppb	50	50	No	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Antimony	2019	BDL	BDL	1	ppm	0.006	0.006	No	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Arsenic	2019	2	2 to 2	1	ppb	10	0	No	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes

Beryllium	2019	BDL	BDL	1	ppm	0.004	0.004	No	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from min
Cadmium	2019	BDL	BDL	1	ppm	0.005	0.005	No	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from min
Chromium	2019	0.02	0.02 TO 0.02	1	ppm	0.1	0.1	No	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from min
Mercury	2019	BDL	BDL	1	ppm	0.002	0.002	No	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from min
Nickel	2019	0.006	0.006 to 0.006	1	ppm	N/A	N/A	No	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from min
Thallium	2019	BDL	BDL	1	ppm	0.002	0.002	No	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from min

		Synthe	etic Organic Coi	ntaminants S	ampled at the	e Entry Poi	nt to the Dist	ribution Syste	em
Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources
Dibromochloropropane	Feb/Aug 2017	BDL	BDL	2	ppb	0.2	0.2	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
2,4,-D	Feb/Aug 2017	BDL	BDL	2	ppb	70	70	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
2,4,5-TP	Feb/Aug 2017	BDL	BDL	2	ppb	50	50	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Alachor	Feb/Aug 2017	BDL	BDL	2	ppb	2	2	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff

Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources
Aldicarb	Feb/Aug 2017	BDL	BDL	2	ppb	N/A	N/A	No	Byproducts of industrial processes and petroleun production, and also may come from gas stations urban storm water runoff
Aldicarb sulfone	Feb/Aug 2017	BDL	BDL	2	ppb	N/A	N/A	No	Byproducts of industrial processes and petroleun production, and also may come from gas stations urban storm water runoff
Aldicarb sulfoxide	Feb/Aug 2017	BDL	BDL	2	ppb	N/A	N/A	No	Byproducts of industrial processes and petroleur production, and also may come from gas stations urban storm water runoff
Atrazine	Feb/Aug 2017	BDL	BDL	2	ppb	3	3	No	Byproducts of industrial processes and petroleur production, and also may come from gas stations urban storm water runoff
Benzo(a)pyrene	Feb/Aug 2017	BDL	BDL	2	ppb	0.2	0.2	No	Byproducts of industrial processes and petroleur production, and also may come from gas stations urban storm water runoff
Carbofuran	Feb/Aug 2017	BDL	BDL	2	ppb	40	40	No	Byproducts of industrial processes and petroleur production, and also may come from gas stations urban storm water runoff

ENGLEWOOD CITY OF, PWS ID: C00103045 2020 CCR Page **8** of **15**

Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources
Chlordane	Feb/Aug 2017	BDL	BDL	2	ppb	2	2	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Dalapon	Feb/Aug 2017	BDL	BDL	2	ppb	200	200	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Di(2- ethylhexy)adipate	Feb/Aug 2017	BDL	BDL	2	ppb	400	400	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Di(2- ethylhexyl)phthalate	Feb/Aug 2017	BDL	BDL	2	ppb	6	6	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Dinoseb	Feb/Aug 2017	BDL	BDL	2	ppb	7	7	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Diquat	Feb/Aug 2017	BDL	BDL	2	ppb	20	20	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Endothall	Feb/Aug 2017	BDL	BDL	2	ppb	100	100	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Endrin	Feb/Aug 2017	BDL	BDL	2	ppb	2	2	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Ethylene dibromide	Feb/Aug 2017	BDL	BDL	2	ppb	0.05	0.05	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Heptachlor	Feb/Aug 2017	BDL	BDL	2	ppb	0.4	0.4	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Heptachlor epoxide	Feb/Aug 2017	BDL	BDL	2	ppb	0.2	0.2	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff

ENGLEWOOD CITY OF, PWS ID: C00103045 2020 CCR Page **9** of **15**

Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources
Hexachlorobenzene	Feb/Aug 2017	BDL	BDL	2	ppb	1	1	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Hexachlorocyclopentadie	Feb/Aug 2017	BDL	BDL	2	ppb	50	50	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Lindane	Feb/Aug 2017	BDL	BDL	2	ppb	0.2	0.2	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Methoxychlor	Feb/Aug 2017	BDL	BDL	2	ppb	40	40	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Oxamyl	Feb/Aug 2017	BDL	BDL	2	ppb	200	200	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Pentachlorophenol	Feb/Aug 2017	BDL	BDL	2	ppb	1	1	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Picloram	Feb/Aug 2017	BDL	BDL	2	ppb	500	500	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Polychlorinated biphenyl's	Feb/Aug 2017	BDL	BDL	2	ppb	0.5	0.5	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Simazine	Feb/Aug 2017	BDL	BDL	2	ppb	4	4	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Toxaphene	Feb/Aug 2017	BDL	BDL	2	ppb	3	3	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
	Feb/Aug 2017	BDL	BDL		ppb			No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff

ENGLEWOOD CITY OF, PWS ID: CO0103045 2020 CCR Page **10** of **15**

Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources	
1,1,1-Trichloroethane	Feb 2019	BDL	BDL	1	ppb	200	200	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff	
1,1,2-Trichloroethane	Feb 2019	BDL	BDL	1	ppb	5	5	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff	
1,1-Dichloroethylene	Feb 2019	BDL	BDL	1	ppb	7	7	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff	
1,2,4- Trichlorobenzene	Feb 2019	BDL	BDL	1	ppb	70	70	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff	
1,2-Dichloroethane	Feb 2019	BDL	BDL	1	ppb	5	5	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff	
1,2-Dichloropropane	Feb 2019	BDL	BDL	1	ppb	5	5	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff	
Benzene	Feb 2019	BDL	BDL	1	ppb	5	5	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff	
Carbon Tetrachloride	Feb 2019	BDL	BDL	1	ppb	5	5	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff	
Monochlorobenzene	Feb 2019	BDL	BDL	1	ppb	100	100	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff	
Cis-1,2- Dichloroethylene	Feb 2019	BDL	BDL	1	ppb	70	70	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff	

ENGLEWOOD CITY OF, PWS ID: CO0103045 2020 CCR Page **11** of **15**

Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources
Dichloromethane	Feb 2019	BDL	BDL	1	ppb	5	5	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Ethylbenzene	Feb 2019	BDL	BDL	1	ppb	700	700	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
o-Dichlorobenzene	Feb 2019	BDL	BDL	1	ppb	600	600	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Para-Dichlorobenzene	Feb 2019	BDL	BDL	1	ppb	75	75	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Styrene	Feb 2019	BDL	BDL	1	ppb	100	100	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Tetrachloroethylene	Feb 2019	BDL	BDL	1	ppb	5	5	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Toluene	Feb 2019	BDL	BDL	1	ppb	1000	1000	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Trans-1,2- Dichloroethylene	Feb 2019	BDL	BDL	1	ppb	100	100	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Trichloroethylene	Feb 2019	BDL	BDL	1	ppb	5	5	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Vinyl chloride	Feb 2019	BDL	BDL	1	ppb	2	2	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff
Xylenes (total)	Feb 2019	BDL	BDL	1	ppb	10000	10000	No	Byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff

ENGLEWOOD CITY OF, PWS ID: CO0103045 2020 CCR Page **12** of **15**

	Cryptosporidium and Raw Source Water E. coli									
Contaminant Name	Year	Number of Positives	Sample Size							
Cryptosporidium	2018	5	27							
E. Coli	2018	28	30							

Cryptosporidium is a microbial pathogen found in surface water throughout the United States. Although filtration removes cryptosporidium, the most commonly used filtration methods cannot guarantee 100 percent removal. Our monitoring indicates the presence of these organisms in our source water. Current test methods do not allow us to determine if the organisms are dead or if they are capable of causing disease. Ingestion of cryptosporidium may cause cryptosporidiosis, an abdominal infection. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. However, immuno-compromised people are at greater risk of developing life-threatening illness. We encourage immuno-compromised individuals to consult their doctor regarding appropriate precautions to take to avoid infection. Cryptosporidium must be ingested to cause disease, and it may be spread through means other than drinking water.

Secondary Contaminants**

**Secondary standards are non-enforceable guidelines for contaminants that may cause cosmetic effects (such as skin, or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water.

Contaminant Name	Year	Average	Range	Sample Size	Unit of Measure	Secondary Standard
			Low – High			
Sodium	2019	189.3	189.3 to 189.3	1	ppm	N/A
Total Dissolved Solids	2019	436	201 to 1075	362	ppm	500
рН	2019	8.00	7.60 to 8.79	2190	Moles per liter	6.5 to 8.5
Temperature	2019	13.78	2.8 to 24.9	2190	Celsius	N/A
Manganese	2019	.03	.01 to .070	730	ppm	0.05

Unregulated Contaminants***

EPA has implemented the Unregulated Contaminant Monitoring Rule (UCMR) to collect data for contaminants that are suspected to be present in drinking water and do not have health based standards set under the Safe Drinking Water Act. EPA uses the results of UCMR monitoring to learn about the occurrence of unregulated contaminants in drinking water and to decide whether or not these contaminants will be regulated in the future. We performed monitoring and reported the analytical results of the monitoring to EPA in accordance with its Unregulated Contaminant Monitoring Rule (UCMR)). Once EPA reviews the submitted results, the results are made available in the EPA's National Contaminant Occurrence Database (NCOD) (epa.gov/dwucmr/national-contaminant-occurrence-database-ncod). Consumers can review UCMR results by accessing the NCOD. Contaminants that were detected during our UCMR sampling and the corresponding analytical results are provided below.

Contaminant Name Max Res	Year	Average	Range Low - High	Sample Size	Unit of Measure
HAA5	2019	10.03	8.35 to 12.2	16	ug/l
HAA6Br	2019	16.19	10.75 to 23.3	16	ug/l
HAA9	2019	23.54	16.75 to 29.2	16	ug/l

Contaminant Name EPTDS from Allen WTP	Year	Average	Range Low - High	Sample Size	Unit of Measure
Manganese	2019	8.38	5.6 to 14	4	ug/l
					ug/l

Contaminant Name Raw Water	Year	Average	Range Low - High	Sample Size	Unit of Measure
Bromide	2019	126.25	50 to 220	8	ug/l
Total Organic Carbon	2019	3975	3000 to 5600	8	ug/l
					ug/l

^{***} More information about the contaminants that were included in UCMR4 monitoring can be found at: drinktap.org/Water-Info/Whats-in-My-Water/Unregulated-Contaminant-Monitoring-Rule.UCMR

Learn more about the EPA UCMR at epa.gov/dwucmr/learn-about-unregulated-contaminant-monitoring-rule or contact the Safe Drinking Water Hotline at: (800) 426-4791 or epa.gov/ground-water-and-drinking-water

Violations, Significant Deficiencies, Backflow/Cross-Connection and Formal Enforcement Action

No violations or Formal Enforcement Actions